
J
H
E
P
0
6
(
2
0
0
8
)
0
9
4

Published by Institute of Physics Publishing for SISSA

Received: April 21, 2008

Accepted: June 10, 2008

Published: June 24, 2008

Holographic QCD beyond the leading order

Youngman Kim,a P. Koa and Xiao-Hong Wuba

aSchool of Physics, Korea Institute for Advanced Study,

207-43, Cheongryangri 2-dong, Dongdaemun-gu, Seoul 130-722, Korea
bInstitute of Modern Physics, School of Science,

East China University of Science and Technology,

Meilong Road 130, Shanghai 200237, China

E-mail: chunboo81@kias.re.kr, pko@kias.re.kr, xhwu@ecust.edu.cn

Abstract: We consider a holographic QCD model for light mesons beyond the leading

order in the context of 5-dim gauged linear sigma model on the interval in the AdS5 space.

We include two dimension-6 operators in addition to the canonical bulk kinetic terms, and

study chiral dynamics of π, ρ, a1 and some of their KK modes. As novel features of dim-6

operators, we get non-vanishing Br(a1 → πγ), the electromagnetic form factor and the

charge radius of a charged pion, which improve the leading order results significantly and

agree well with the experimental results.

Keywords: AdS-CFT Correspondence, QCD.

mailto:chunboo81@kias.re.kr
mailto:pko@kias.re.kr
mailto:xhwu@ecust.edu.cn
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
0
9
4

Contents

1. Introduction 1

2. Gauged linear sigma model in the AdS5 space 3

3. Vector, axial-vector and pseudoscalar sectors 5

3.1 Relevant parts of the lagrangian 5

3.2 Two-point correlation functions 6

4. Interactions and phenomenology 8

4.1 KK decompositions 8

4.2 ρ → ππ 8

4.3 Electromagnetic form factor of a charged pion 9

4.4 a1 → ρπ 10

4.5 a1 → πγ 11

4.6 Numerical results 11

5. Chiral lagrangian for pseudoscalars up to O(p4) 12

6. Conclusions 14

1. Introduction

To understand the dynamics of low lying hadrons from underlying QCD has been a long

standing problem in theoretical physics. In chiral Lagrangian approaches, it has been

known for some time that the low energy dynamics of pions, vector mesons ρ and axial

vector mesons a1 are well described by the gauged linear sigma model (or its nonlinear

version) with massive Yang-Mills gauge filds. The model Lagrangian up to dimension-6

operators is given by 1

LMassiveYM = Tr

[

−1

4
LµνL

µν − 1

4
RµνRµν +

1

2
DµΦDµΦ − 1

2
M2

ΦΦ†Φ

]

+
1

2
m2

0 Tr(LµLµ + RµRµ)

+Tr
[

+ζ
(

LµνD
µΦDνΦ† + RµνD

µΦ†DνΦ
)

+ κLµνΦRµνΦ†
]

+λ1Tr(Φ†Φ)2 + λ2

[

Tr(Φ†Φ)
]2

+ (λ3det(Φ) + H.c.) (1.1)

1We ignore the Wess-Zumino-Witten term in this work.
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The role of the higher dimensional operators in light hadron dynamics, especially κ and

ξ terms, were studied in the framework of the gauged linear sigma model in 4D [1, 2].

Although the above Lagrangian is quite successful in describing the π − ρ − a1 system,

it has a conceptual drawback in that we need to give gauge boson masses m2
0 by hand.

If we put m2
0 = 0, global chiral symmetry becomes local symmetry, which is not a true

symmetry of real QCD, and we end up with massless ρ and a1, which is phenomenologically

disastrous. Therefore we have to put m2
0 6= 0 and have to impose chiral symmetry only as a

global symmetry. However, if chiral symmetry is only a global symmetry, then there is no

compelling reason to introduce gauge covariant derivative, hence no reason for the minimal

coupling between hadrons and (axial) vector mesons, and thus universality of the P−V −V

couplings. Since the universality seems to hold to a good approximation, it is tempting to

implement global chiral symmetry to local symmetry. This have been remained a problem

in chiral dynamics approach to the low lying hadrons.

Recently, there have been many interesting and successful attempts to understand

hadron physics in the context of AdS/CFT correspondence [3]. The properties of hardrons

and the hadron physics phenomenology are studied in various approaches [4 – 14] which

are inspired by the AdS/CFT correspondence.

One may start with some stringy setup that may reproduce certain aspects of non-

perturbative QCD. The most successful approach so far seems, arguably, the works by

Sakai and Sugkimoto [5], and follow-up papers [15]. The model by Sakai and Sugimoto

has nice features, but also some drawbacks. They show that chiral dynamics of π, ρ and

a1 system can be well reproduced by studying the Nf D8-branes in the background of Nc

D4-branes. Also the Wess-Zumino-Witten (WZW) term is derived from the 5-dim Chern-

Simon (CS) term. On the other hand, there are spurious SO(5) symmetry from S5, which

is not a true symmetry of real QCD. And it is not easy to accommodate nonzero quark

masses, namely nonzero pion mass. Finally the pion and its radial excitation comes from

different 5-dim fields, which is not easy to understand within the quark model. Despite

numerous remarkable successes of Sakai-Sugimito model, there is an ample room for further

improvement.

Independent of the stringy approach, a gravity dual model of the gauged linear sigma

model was proposed to describe the chiral dynamics of light hadrons [6, 7]. This approach

is often called the bottom-up approach, where one starts from QCD and then tries to

construct its five-dimensional holographic dual model, AdS/QCD. Following the AdS/CFT

correspondence, it is assumed that there are bulk fields that couple to the 4-dimensional

QCD operators. For example, there are bulk gauge fields LM and RM that couple to the

QCD operators jL ≡ q̄LγµqL and jR ≡ q̄RγµqR, which are flavor currents.

Quality of the overall fit to the meson properties in the models of ref. [6, 7] is at the

level of ∼ 30%, which is quite remarkable, considering the simplicity of the model. However

it predicts B(a1 → πγ) = 0 and too small charge radius of a charged pion. The Lagrangian

in ref. [6, 7] is the leading order one, since it contains only the bulk kinetic terms for the

bulk gauge fields and scalar fields. In order to improve the predictions for B(a1 → πγ) and

the charge radius of a charged pion, we have to go beyond the leading order Lagrangian.

In this paper, we construct an AdS5 dual model of the gauged linear sigma model with
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dimension-6 operators, motivated by the recently developed AdS/QCD model [6, 7]. To

this end we incorporate higher dimensional operators, especially two dim-6 terms, into the

AdS/QCD model.2 In this work, we only consider the vector, axial-vector and pseudoscalar

sectors, as a first step of our study. Interestingly enough, we find that the aforementioned

problem of giving gauge boson masses m2
0 is no longer present, since one can give masses of

the vector and axial vector mesons, by projecting out the zero modes by choosing suitable

boundary conditions. Degeneracy between the vector and the axial vector mesons will be

lifted by the conventional Higgs mechanism. Still there remain physical pions.

Naively, these new operators will have nontrivial effects on the interaction vertex, as

well as mass spectra and decay constants. We expect that they may contribute to the

Br(a1 → πγ), which is zero in the original AdS/QCD model [6, 7]. We also study the

phenomenology of ρ → ππ and a1 → ρπ, the branching ratios and D/S wave amplitude

ratio in the latter channel. By introducing photon as an external field, we study the pion

electromagnetic form factor, and calculate the pion electromagnetic charge radius, which

agrees with the experimental results in our numerical study.

This paper is organized as follows. In section 2, we define the Lagrangian of our model

with two dim-6 operators in AdS5. In section 3, we study the mass spectra and decay

constants in vector, axial-vector and pseudoscalar sectors. We also present the interaction

vertex and phenomenology of a1 → ρπ, ρ → ππ, a1 → πγ channels, and calculate the pion

charge radius. We derive the relevant chiral coefficients in section 4, and give our numerical

results in section 5. The conclusions are drawn in section 6.

2. Gauged linear sigma model in the AdS5 space

The Lagrangian of the holographic QCD model [6, 7] defined in a slice of AdS5 is given by

Ldim−4
5 =

√
gM5 Tr

[

−1

4
LMNLMN − 1

4
RMNRMN

+
1

2
(DMΦ)†DMΦ − 1

2
M2

ΦΦ†Φ

]

, (2.1)

where M2
Φ = −3/L2 from AdS/CFT correspondence [3], DMΦ = ∂MΦ + iLMΦ − iΦRM ,

LM = La
Mτa/2 with τa being the Pauli matrix, and M,N = 0, 1, 2, 3, 5(or z ). We define

Φ = SeiP/v(z) with 〈S〉 = v(z). Under SU(2)V , S and P transform as singlet and triplet,

respectively. The AdS5 space is characterized in the conformally flat metric with a warp

factor a(z) ≡ L/z:

ds2 = a2(z)(dxµdxµ − dz2). (2.2)

The scale L is the curvature of the 5-dimensional AdS space. In this model, the AdS5 space

is compactified such that L0 < z < L1, where L0 → 0 is an ultra-violet (UV) cutoff and

L1 is an infrared (IR) cutoff. Solving the equation of motion for S, we obtain [7]

〈S〉 ≡ v(z) = c1z + c2z
3 (2.3)

2For a brief report on the present work, see Ref [16]
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with the integration constants c1,2,

c1 =
MqL

3
1 − ξL2

0

LL1(L2
1 − L2

0)
, c2 =

ξ − MqL1

LL1(L2
1 − L2

0)
. (2.4)

Here we adopted the following boundary conditions

Mq =
L

L0
v

∣

∣

∣

∣

L0

, ξ = Lv

∣

∣

∣

∣

L1

, (2.5)

where Mq is the current quark mass matrix, which breaks chiral symmetry explicitly, and

ξ is related to 〈q̄q〉, which breaks chiral symmetry spontaneously. The value of L1 is fixed

by the rho-meson mass: 1/L1 ≃ 320 MeV [6, 7]. There may be several ways to improve the

model given above, though several observables obtained from the model are in agreement

with experiments. One immediate extension of the model is to see corrections from various

sources: trilinear or quartic interactions among the vector fields, 5D loop corrections,

higher dimensional operators and back-reactions on the metric due to condensates [12]. In

the present work, we consider corrections to the model from higher dimensional operators,

though to be consistent we have to treat all those corrections at the same time. We

note that a part of large Nc corrections through meson-loop contributions are discussed in

ref. [18].

Now we introduce higher dimensional operators in the model Lagrangian in eq. (2.1). In

principle, we can include infinite tower of higher dimensional operators, but for simplicity

we consider only dimension-6 operators in the chiral limit. Note here that we have the

following mass dimensions for a scalar field Φ and vector fields LM and RM :

dim(Φ) = dim(LM ) = dim(RM ) = 1 . (2.6)

The Lagrangian with dimension-6 operators reads

Ldim−6
5 =

√
gM5 Tr

[

− i
κ

M2
5

(

LMNDMΦ(DNΦ)† + RMN (DMΦ)†DNΦ

)

(2.7)

+
ζ

M2
5

LMNΦRMNΦ†
]

,

where κ and ζ are constants that will be fixed later.

There are more dimension-6 operators, such as

Ldim−6
5 =

√
gM5 Tr

[

L N
M L P

N L M
P + (L ↔ R)

]

(2.8)

However these terms are O(p6) after chiral symmetry breaking, whereas the κ and ζ terms

are O(p4) after chiral symmetry breaking. Therefore we keep only those dimension-6 terms

that reduce to O(p4) after chiral symmetry breaking. We note that the corrections to

physical observables from the second dim-6 operator Tr[LMNΦRMNΦ†] in eq. (2.7) and

the operator in eq. (2.8) have been discussed in ref. [19].
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3. Vector, axial-vector and pseudoscalar sectors

3.1 Relevant parts of the lagrangian

In this section, we work in the chiral limit. Then v(z) is proportional to 1, v(z) ≃ ξ z3

L3
1

1.

The vector and axial gauge bosons are defined by

VM =
1√
2
(LM + RM )

AM =
1√
2
(LM − RM ) . (3.1)

In order to cancel the mixing terms of Vµ, Aµ (µ as 4D Lorentz index, 0, 1, 2, 3) and Vz,

Az, P , we add gauge fixing terms

LV
GF = −M5a

2ξV
Tr

[

∂µV µ − ξV

a

(

∂5(aVz) −
2ζ

M2
5

∂5(av2Vz)

)]2

,

LA
GF = −M5a

2ξA
Tr

[

∂µAµ − ξA

a

(

∂5(aAz) +
√

2a3vP

+
2
√

2κ

M2
5

∂5(a(∂5v)P ) +
4κ

M2
5

av(∂5v)Az +
2ζ

M2
5

∂5(av2Az)

)]2

. (3.2)

In the unitary gauge, ξV,A → ∞, we have the following relation between Az and P ,

√
2a3vP + ∂5(aA5) +

2
√

2κ

M2
5

∂5(a(∂5v)P ) +
4κ

M2
5

av(∂5v)Az +
2ζ

M2
5

∂5(av2Az) = 0, (3.3)

which is identical to the leading order relation [7] when κ = ζ = 0.

The quadratic terms for vector, axial-vector and pseudoscalar are given by, after inte-

gration by parts,

LV =
M5

2
aTr

{

Vµ

(

∂2Zv − a−1∂5aZv∂5

)

V µ

}

, (3.4)

LA =
M5

2
aTr

{

Aµ

(

∂2Za − a−1∂5aZa∂5 + 2a2v2 − 8κ

M2
5

v(∂5v)∂5

)

Aµ

}

,

Lπ =
M5

2
aTr

{

(−2a3v2)

(

Az+∂5
P√
2v

)

+a(∂µAz)
2 + a3(∂µP )2 +

4
√

2κ

M2
5

a(∂5v)(∂µAz)(∂
µP )+

2ζ

M2
5

av2(∂µAz)
2

}

.

with Zv = 1 − 2ζv2

M2
5

and Za = 1 + 2ζv2

M2
5

. The boundary terms are

Lboundary = M5aTr

(

V µZv∂5Vµ + AµZa∂5Aµ

−Aµ∂µAz −
2
√

2κ

M2
5

(∂5v)Aµ∂µP − 2ζ

M2
5

v2Aµ∂µAz

)
∣

∣

∣

∣

z=L1

z=L0

. (3.5)
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We choose the following boundary conditions to cancel the IR-boundary terms,

∂5Vµ

∣

∣

∣

∣

z=L1

= ∂5Aµ

∣

∣

∣

∣

z=L1

= 0, V5

∣

∣

∣

∣

z=L1

= A5

∣

∣

∣

∣

z=L1

= 0 (3.6)

Az +
2
√

2κ

M2
5

(∂5v)P +
2ζ

M2
5

v2Az

∣

∣

∣

∣

z=L1

= 0 , (3.7)

and the UV-boundary condition will be specified later.

We also calculated V AP , V PP and four-pion interaction vertices

LVAP =

√
2i

2
M5aTr

[

Aµ[∂5Vµ, Az] − (∂5A
µ)[Vµ, Az] +

√
2a2vAµ[Vµ, P ]

]

−2iκ

M5
aTr

[

(∂5v)(∂5A
µ)[Vµ, P ] −

√
2v(∂5v)Aµ[Vµ, Az] +

√
2v2Aµ[∂5Vµ, Az]

+vAµ[∂5Vµ, ∂5P ] + vAµ[Vµν , ∂νP ]

]

− iζ

M5
avTr

[

Aµν [Vµν , P ] − 2(∂5A
µ)[∂5Vµ, P ] +

√
2vAµ[∂5Vµ, Az]

+
√

2v(∂5A
µ)[Vµ, Az]

]

, (3.8)

LV ππ =
i

2
M5aTr

[

V µ[Az , ∂µAz] + a2V µ[P, ∂µP ]

]

+

√
2iκ

M5
a

[

1

2
V µν [∂µP, ∂νP ] + (∂5V

µ)[∂µP, ∂5P ] −
√

2v(∂5V
µ)[Az , ∂µP ]

+
√

2(∂5v)V µ[Az, ∂µP ] −
√

2(∂5v)V µ[∂µAz, P ]

]

−
√

2iζ

M5
avTr

[

− vV µ[Az, ∂µAz] +
√

2(∂5V
µ)[P, ∂µAz]

]

, (3.9)

Lπ4 = −a3M5

12v2
Tr

[

(∂µP )2P 2 −
(

(∂µP )P

)2]

− aκ

M5
Tr

[

(∂µAz)(∂µP )AzP −
(

(∂µAz)P

)2]

+

√
2

3

a(∂5v)κ

v2M5
Tr

[

(∂µAz)(∂µP )PP − (∂µAz)P (∂µP )P

]

−
√

2aκ

vM5
Tr

[

(∂µAz)(∂µP )P (∂5P ) − (∂µAz)(∂5P )(∂µP )P

]

− aζ

M5
Tr

[

(∂µAz)
2P 2 −

(

(∂µAz)P

)2]

. (3.10)

3.2 Two-point correlation functions

We calculate the two-point correlation functions for vector and axial-vector with respect

to the UV boundary external source fields vµ and aµ, which couple to the vector and

axial-vector currents operators, respectively,

Vµ|z=L0
= vµ, Aµ|z=L0

= aµ. (3.11)
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From the AdS/CFT correspondence, in order to calculate the current-current correlation

function in the strongly coupled CFT side, we can do it in the weakly interacting AdS side

instead. Then the effective Lagrangian in momentum space in term of the correlators is

Leff = vµΠµν
V (p2)vν + aµΠµν

A (p2)aν (3.12)

with Πµν
V,A(p2) = (gµν −pµpν/p2)ΠV,A(p2). We solve the equations of motion for the vector

and axial-vector field derived from eq. (3.4) with the boundary conditions (3.6) and (3.11)

and calculate the two-point correlation function

Π(p2) = −M5L
∂5f(z)

zf(z)

∣

∣

∣

∣

z=L0→0

(3.13)

where f(z) is the solution of differential equation. With dim-6 operators, we cannot cal-

culate the two-point correlation function Π(p2) analytically, instead, we do it numerically.

For asymptotically large momentum p2L2
1 ≫ 1, we can expand the 2-point functions

in powers of 1/p2, and get

ΠV,A(p2) = p2

[

M5L

2
ln p2L2

0 + cV,A
6

1

p6

]

, (3.14)

with

cV
6 = − 192ζ

5M5LL6
1

ξ2, cA
6 =

(

16M5L

5L6
1

+
192ζ

5M5LL6
1

+
384κ

5M5LL6
1

)

ξ2, (3.15)

which agree with the results in ref. [7] for κ = ζ = 0. It is worthwhile to calculate the

left-right correlator ΠLR = ΠV − ΠA, in the large momentum limit, we have

ΠLR =
c6

p4
+ . . . (3.16)

with c6 = cV −cA, where the experimental value of c6 = −4παs〈q̄q〉2 ≃ −1.3×10−3GeV6 is

obtained from ref. [20]. We remark here that the vector correlator obtained in the present

work and in the hard wall model [6, 7] has no 1/p4 compared to the results from operator

product expansion (OPE) [21]. In the chiral limit, the coefficient of 1/p4 term is due to

the gluon condensate [21]. In the hard wall model adopted in the present work, however,

the metric is just a pure AdS with no gluon condensate included, and the model has no 5D

bulk scalar field that couples to tr(GµνGµν) at the boundary, where Gµν is the gluon field

strength tensor. Therefore, the vector and axial-vector correlators in the hard wall model

do not contain 1/p4 term, as it should be. To have 1/p4 in eq. (3.14), we have to consider

a deformed AdS background [22] due to the back-reaction of the gluon condensate.

In the large Nc limit, the above correlators can be written as the sum in terms of the

resonance masses and decay constants,

ΠA(p2) = p2
∑

n

f2
An

p2 − M2
An

+ f2
π (3.17)

ΠV (p2) = p2
∑

n

f2
Vn

p2 − M2
Vn

. (3.18)
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Then the vector and axial meson masses are determined as the poles of their corresponding

correlators, and the decay constants are related with the residue,

f2
ρ,a1

= lim
p2→m2

ρ,a1

(p2 − m2
ρ,a1

)ΠV,A(p2)/p2, (3.19)

f2
π = ΠA(0). (3.20)

4. Interactions and phenomenology

4.1 KK decompositions

Now we study hadronic observables such as decay widths and form factors using our model

given in eq. (2.1) and eq. (2.7). Primarily we investigate how those dimension-6 operators in

eq. (2.7) affect the results obtained with only interactions in eq. (2.1). To this end, we first

Kaluza-Klein (KK) decompose the vector field as Vµ(x, z) = 1√
M5L

∑∞
n=1 Ṽ

(n)
µ (x)f

(n)
V (z)

and also for the axial-vector and pseudoscalar fields, where we omit the superscript index

(n) when we consider the lowest KK mode. The first resonances of the vector, axial-vector

and pseudoscalar fields are associated with ρ, a1 and π respectively. The equations of

motion for the vector, axial-vector and pseudoscalar fields are easily read off from eq. (3.4).

To cancel the boundary terms, in addition to the IR boundary conditions given in eq. (3.6)

and eq. (3.7), we impose the following UV boundary conditions

Vµ

∣

∣

∣

∣

z=L0

= 0,

Aµ

∣

∣

∣

∣

z=L0

= 0, (4.1)

P

∣

∣

∣

∣

z=L0

= 0 .

We obtain the wave function and mass spectra of various fields numerically with the nor-

malization conditions:

∫ L1

L0

dz
a

L
Zv(z)f

(m)
V (z)f

(n)
V (z) = δmn,

∫ L1

L0

dz
a

L
Za(z)f

(m)
A (z)f

(n)
A (z) = δmn,

∫ L1

L0

dz
a

L

(

(fAz(z))2 + a2(fP (z))2 +
4
√

2κ

M2
5

(∂5v)fAzfP +
2ζ

M2
5

v2(fAz)
2

)

= 1. (4.2)

4.2 ρ → ππ

The ρππ vertex can be expressed as

Lρππ =
i√
2
gρππTr(Ṽ µ[Ã5, ∂µÃ5]) +

i√
2
fρππTr(Ṽ µν [∂µÃ5, ∂νÃ5]) (4.3)
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with the couplings

gρππ =

∫ L1

L0

dz
a√

M5L3

[

fV f2
Az

+ a2fV f2
P

+
2κ

M2
5

(

− (∂5fV )fP (∂5fP ) −
√

2v(∂5fV )fAzfP + 2
√

2(∂5v)fV fAzfP

)

−2ζv

M2
5

(

− vfV f2
Az

+
√

2(∂5fV )fAzfP

)]

(4.4)

fρππ =

∫ L1

L0

dz
κ

√

M5
5 L3

afV f2
P (4.5)

We also calculate the decay width Γ(ρ → ππ), which includes the non-minimal coupling

fρππ, even though its contribution is numerically small.

4.3 Electromagnetic form factor of a charged pion

Before we study the electromagnetic form factor of a charged pion, we introduce the photon

as an external gauge field and rewrite the bulk vector field decomposition as

Vµ(x, z) = eF̃µ(x)τ3 +
1√

M5L

∞
∑

n=1

Ṽ (n)
µ (x)f

(n)
V (z) , (4.6)

with τ3 = σ3/
√

2, where σ is the Pauli matrix, and e is identified with the physical electron

charge at chiral symmetry breaking scale. To treat photon and ρ on the same footing,

we introduce fF (z) = 1 as the fifth dimension profile for photon. The advantage of our

treatment of photon as external field, compared with the treatment of photon as the electro-

magnetic subgroup of SU(3)V [7], is that we don’t need to worry about the KK excitations

of the photon, as well as the mixing between photon KK excitations and ρ0 KK excitations.

We consider the electromagnetic form factors of pions. In additional to the usual

structure of contact γππ interaction Tr(Fµ[Ã5, ∂µÃ5]), we also have non-minimal structure

Tr(Fµν [∂µÃ5, ∂νÃ5]), which comes from the dim-6 κ term. And we also find gγππ = e after

comparing with the pion normalization condition, eq. (4.2). From the kinetic term (3.4)

and the vector KK decomposition (4.6), we can derive the kinetic mixing of γ and ρ,

Lγρ = −1

2
egγρF

µν Ṽµν , (4.7)

with

gγρ =
M5√
M5L

∫ L1

L0

dzaZvfV (z) . (4.8)

The electromagnetic form factor of pion can be calculated as

F (q2) = 1 − fγππ

gγππ
q2 − gγρq

2

q2 − m2
ρ

gρππ. (4.9)

In small momentum limit, it can also be expressed as

F (q2) = 1 +
1

6
r2
πq2 + O(q4) , (4.10)

– 9 –
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with the pion charge radius rπ calculated as

r2
π = 6

[

− fγππ

gγππ
+

gγρgρππ

m2
ρ

]

. (4.11)

Our vector meson dominance (VMD) is different from the usual VMDs as dis-

cussed in ref. [24], where we have an additional non-minimal γππ contact interaction,

Tr(F̃µν [∂µÃ5, ∂νÃ5]).

4.4 a1 → ρπ

We first consider the process a1 → ρπ. Applying the KK-decomposition to LVAP in

eq. (3.8), we obtain

La1ρπ = ig1a1ρπTr(Ãµ[Ṽµ, Ãz]) + ig2a1ρπTr(Ãµ[Ṽµν , ∂νÃz])

+ig3a1ρπTr(Ãµν [Ṽµν , Ãz ]) (4.12)

with the coefficients gia1ρπ (i = 1, 2, 3)

g1a1ρπ =

∫ L1

L0

dz
a√

M5L3

[

1√
2

(

fA(∂5fV )fAz − (∂5fA)fV fAz +
√

2a2vfAfV fP

)

− 2κ

M2
5

(

(∂5v)(∂5fA)fV fP −
√

2v(∂5v)fAfV fAz

+
√

2av2fA(∂5fV )fAz + avfA(∂5fV )(∂5fP )

)

−
√

2ζ

M2
5

av

(

v(∂5fA)fV fAz + vfA(∂5fV )fAz −
√

2(∂5fA)(∂5fV )fP

)]

(4.13)

g2a1ρπ = −
∫ L1

L0

dz
2κ

√

M5
5 L3

[

avfAfV fP

]

(4.14)

g3a1ρπ = −
∫ L1

L0

dz

√
2ζ

√

M5
5 L3

[

av2(∂5fA)fV fAz

]

. (4.15)

With the interaction vertex above, it is straightforward to derive the amplitude of the

process, which can be written as

A(a1 → ρπ) = −iǫµ(sa1
)ǫν(sρ)

[

fa1ρπgµν + ga1ρπpπµpπν

]

.

The S/D wave amplitudes are defined as in ref. [17]

〈ρ(~ksρ)π(−~k)|H|a1(0sa1
)〉 = ifS

a1ρπδsρsa1
Y00(Ωk) + ifD

a1ρπ

∑

mL

C(211;mLsρsa1
)Y2mL

(Ωk) ,

with

fS
a1ρπ =

√
4π

3mρ

[

(Eρ + 2mρ)fa1ρπ − k2ma1
ga1ρπ

]

fD
a1ρπ = −

√
8π

3mρ

[

(Eρ − mρ)fa1ρπ − k2ma1
ga1ρπ

]

. (4.16)
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case L1 κ (10−6) mρ ma1
Γ(ρ → ππ) Γ(a1 → πγ) Γ(a1 → ρπ)

fπ ξ ζ (10−6) fρ fa1
gρππ rπ(fm) D/S ratio

expected 775.8 ± 0.5 1230 ± 40 146.4 ± 1.5 0.640 ± 0.246 250 ∼ 600

86.4 ± 9.7 0.672 ± 0.008 −0.108 ± 0.016

A 3.125 0. [769.6] [1253] 95.4 0. 295.5

85.0 4.0 0. 138 163 4.8 0.585 -0.055

B 2.836 -5.930 [775.8] [1230] [146.5] 0.088 165.3

71.9 2.56 -39.72 144 182 5.8 0.654 [−0.094]

C 3.102 -16.03 [775.8] [1246] [146.4] 0.042 409.8

[78.7] 4.010 0.09188 140 172 5.6 0.640 -0.027

Table 1: Various hadronic observables obtained in the present work. The unit of masses, decay

constants and decay widths is MeV. The inputs for each case are shown in the brackets.

And also the decay width of a1 → ρπ is

Γ(a1 → ρπ) =
pc

4πma1

[

2

3
f2

a1ρπ +
1

3

(

Eρ

mρ
fa1ρπ +

ma1

mρ
p2

cga1ρπ

)2]

. (4.17)

4.5 a1 → πγ

In this subsection, we study the process a1 → πγ, With the help of vector KK decom-

position eq. (4.6), we have similar results as a1 → ρπ. We have verified that the gauge

non-invariant term of structure Tr(Ãµ[Fµ, Ãz ]) is cancelled out, when we impose the rela-

tion between Az and P , e.g., eq. (3.3), the boundary condition eq. (3.7) and ∂5fF = 0.

4.6 Numerical results

In this subsection, we present the numerical results of various hadronic obsevables and

chiral coefficients discussed previously. We use χ2 to fit the four parameters L1, ξ, κ, ζ

from mρ, ma1
, D/S ratio, Γ(ρ → ππ) in case B and mρ, ma1

, Γ(ρ → ππ), fπ in case C.

Our results are summarized in table 1, 2, and figure 1. As a comparison, we also give Da

Rold and Pomarol’s results [7] in case A.

In both cases B and C, Γ(a1 → πγ) is non-vanishing, but small (less than 100KeV),

while Γ(a1 → ρπ) is a little small in case B, but consistent with experimental measurement

in case C. We have checked that the dominant contribution to Γ(a1 → ρπ) comes from

the leading order structure Tr(Ãµ[Ṽµ, Ãz ]). However, Tr(Ãµ[F̃µ, Ãz ]) term is not gauge

invariant and cancelled out for a1 → πγ channel. Then only dim-6 κ and ζ terms contribute

to the above process. This is different from usual 4D models with large Γ(a1 → πγ), where

the ratio between Γ(a1 → πγ) and Γ(a1 → ρπ) is roughly e2/g2
ρππ, and only a single type

of operator Tr(Ãµν [Ṽµν , π]) contributes to both channels [1].

The pion charge radius rπ agrees with the experiment in both case B and C. Pion

decay constant fπ is a bit small in case B, while the D/S ratio of a1 → ρπ is small in case

C, compared with experiment. As in other 5D models, the KSRF relation g2
ρππ/m2

ρ = c/f2
π

with c = 1/2 [23] is not satisfied very well. In both case B and C, c is roughly 0.3, which

means the complete vector meson dominance of order O(p2) four-pion interaction, with

the higher ρ resonace and scalar exchange, and contact four-pion interaction contribution

below ∼ 10%.
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case C

q2=-Q2 (GeV)2

F(
Q

2 )

Figure 1: Pion form factor F (Q2) as a function of q2. The white circles are data from CERN [25],

square from DESY [26], triangle from DESY [27], black circle from Jlab [28], and black square from

Jlab [29].

case A case B case C expected

cV
6 0. 0.0008 0.0000 −0.0005

cA
6 0.0014 0.0000 0.0006 0.0008

c6 −0.0014 0.0008 −0.0006 −0.0013

Table 2: OPE coefficients cV
6 , cA

6 , and c6 in unit GeV6.

The pion form factor F (q2) as a function of q2 is plotted in figure 1. We find the form

factor has better behavior in case B and C for large value of momentum than that in case A.

The OPE coefficients cV
6 , cA

6 , and c6 are presented in table 2. The individual coefficients

cV
6 and cA

6 do not agree very well with the expected value in all three cases, while the

coefficient of left-right correlator agrees with the expected value in case A. However, we

note that the OPE is also sensitive to the deformation of the AdS metric [8]. Considering

the OPE behavior, it may be worth remarking that, although the spirit of bottom-up

AdS/QCD models has been to match the theory in the UV and then compare with the

physical observables in the IR, it is not surprising that the best fit to data would arise

from a model that disagrees with the precise UV behavior of QCD, where the model is not

expected to be valid.

5. Chiral lagrangian for pseudoscalars up to O(p4)

Before we discuss the O(p4) chiral Lagrangian, we consider the vector field ρ effective
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case L1 L2 L3 L9 L10 mπ+ − mπ0 (MeV)

exp 0.4 ± 0.3 1.4 ± 0.3 −3.5 ± 1.1 6.9 ± 0.7 −5.5 ± 0.7 4.6

A 0.43 0.86 −2.6 5.1 −5.5 3.4

B 0.32 0.65 −1.9 4.0 −5.0 1.5

C 0.46 0.93 −2.8 5.3 −5.1 2.9

Table 3: The chiral coefficients Li in unit 10−3.

Lagrangian [30],

LV = −1

4
Tr[V µνVµν ] +

1

2
m2

ρTr[Vµ − i

g
Γµ]2

− 1

2
√

2
egγρTr[Vµνfµν

+ ] +
i√
2
fρππf2

πTr[Vµνuµuν ] (5.1)

with ρ transforming as gauge field of SU(2)V and the notation of Γµ, fµν
+ , uµ the same as

in ref. [30]. The coefficients in the effective Lagrangian are determined by matching with

our theory with dim-6 operators. The O(p4) chiral Lagrangian for the pions is given in

ref [31],

L4 = L1Tr2[DµU †DµU ] + L2Tr[DµU †DνU ]Tr[DµU †DνU ] + L3Tr[DµU †DµUDνU †DνU ]

+L4Tr[DµU †DµU ]Tr[U †χ + χ†U ] + L5Tr[DµU †DµU(U †χ + χ†U)]

+L6Tr2[U †χ + χ†U ] + L7Tr2[U †χ − χ†U ] + L8Tr[χ†Uχ†U + U †χU †χ]

−iL9Tr[Fµν
R DµUDνU † + Fµν

L DµU †DνU ] + L10Tr[U †Fµν
R UFLµν ] . (5.2)

In the present, we do not discuss scalar and pseudoscalar resonances contribution to

L3,4,5,6,7,8, and only study the vector and axial resonances contribution to L1,2,3,9,10. After

Integrating out the vector rho meson, we obtain the following chiral coefficients,

L1 =
f4

π

8m4
ρ

g2
ρππ − f4

π

4m4
ρ

gρππfρππ, L2 = 2L1, L3 = −6L1,

L9 =
f4

π

m4
ρ

g2
ρππ +

f2
π

2m2
ρ

egρππfρππ − 2f4
π

m2
ρ

gγρgρππ. (5.3)

L10 can be calculated from the two-point correlators of vector and axial, ΠV,A,

L10 =
1

4
[Π′

A(0) − Π′
V (0)], (5.4)

where the derivative is over p2.

We also calculate the electromagnetic mass difference of the pions from the operator

of Tr[QRUQLU †],

mπ+ − mπ0 ≃ 3αem

8πmπf2
π

∫ ∞

0
dp2(ΠA − ΠV ). (5.5)

The chiral coefficients of relevance and electromagnetic pion mass difference are given

in table 3. Compared with Da Rold and Pomarol’s case, the results do not significantly

change much in our two cases.
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6. Conclusions

In this paper, we considered holographic QCD beyond the leading order, by including two

dim-6 dimension operators that go beyond the usual quadratic kinetic terms for the bulk

gauge field LM and RM , and scalar field Φ [6, 7]. We have studied the mass spectra,

decay constants of vector, axial and pseudoscalar sectors, and phenomenology of a1 → ρπ,

ρ → ππ and a1 → πγ channels. In our work, we could achieve a non-vanishing branching

ratio for a1 → πγ, which is a new feature compared with the usual holographic QCD in

the leading order. We also calculated the electromagnetic form factor of a charged pion,

(including the charge radius of a pion) which agrees with the experimental results up to

q2 ≃ 2GeV2. The numerical results are summarized in table 1, and compared with the

leading order results obtained by Da Rold and Pomarol [7] denoted as the case A. We

could achieve significant improvements in overall phenomenology of the π − ρ − a1 system

by including the κ and ζ terms.

Let us remind ourselves that most studies based on the AdS/QCD approach are just

the leading order calculations, starting from the bulk Lagrangian which is quadratic in the

bulk gauge fields. Including the next-to-leading order corrections would be the next step to

follow, and our present work makes such an attempt by considering dim-6 operators that

reduce to the O(p4) operators after chiral symmetry breaking. Considering the improve-

ment of overall phenomenology obtained in this work, it would be clearly desirable to have

more systematic study of subleading corrections within AdS/QCD.
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